Microbiological Transformations. Part 4.1 Microbiological Transformations of 5α-Androstan-17-ones and of 17a-Aza-d-homo-5 α-androstan-17ones with the Fungus Cunninghamella elegans

By Trevor A. Crabb,* John A. Saul, and Roger O. Williams, Department of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire PO1 2DT

Abstract

The microbiological transformation of 5α-androstan-17-one, and the 3β-acetoxy- and 3α-hydroxy-derivatives, by Cunninghamella elegans is dominated by $1 \beta, 7$-dihydroxylation or 7 -monohydroxylation. 3α-Acetoxy- $5 \alpha-$ androstan-17-one undergoes predominant $6 \beta, 11 \beta$-dihydroxylation. 17a-Aza-D-homo- 5α-androstan-17-one and the 3α-acetoxy-derivative undergo predominant monohydroxylation at 6β or 7α, in contrast to the 3β-acetoxyderivative which, although undergoing similar monohydroxylation, gives good yields of 9α-monohydroxylated products.

As part of a study of the microbiological transformations of aza-steroidal derivatives, 17a-aza-p-homo- 5α-andro-stan-17-one (1), 3β-acetoxy-17a-aza-d-homo- 5α-andro-stan-17-one (2), and 16-aza-5 α-androstan-17-one (19) were selected as substrates for incubation with Cunninghamella elegans. For comparison purposes the carbocylic analogues 5α-androstan-17-one (23), 3β -acetoxy- 5α-androstan-17-one (27), 3α-hydroxy- 5α -androstan-17-one (34), and 3α-acetoxy- 5α-androstane (41) were incubated under the same conditions with the same fungus. The results of the incubation of $3 x-$ acetoxy-17a-aza-d-homo-5 α-androstan-17-one (3) and $3 x$ -acetoxy- 5α-androstan- 17 -one (37) have been reported. ${ }^{2}$ Incubations of all the substrates were carried out for 3 d at $25^{\circ} \mathrm{C}$ under conditions previously described and the results are summarised in Tables 1 and 2. Assignments were based largely on the ${ }^{1} \mathrm{H}$ n.m.r. angular methyl group chemical-shift changes ${ }^{3-5}$ and the chemical shifts and coupling constants of the CHOH protons (Tables 3-5). In certain cases assignments were con-
firmed by acetylation or by oxidation of the product and the ${ }^{1} \mathrm{H}$ n.m.r. spectra of these derivatives are included in the Tables.

DISCUSSION

5α-Androstan-17-one (23) is $1 \beta, 7 \alpha$-dihydroxylated by C. elegans (cf. the $1 \beta, 6 \alpha$-dihydroxylation of the same substrate by Calonectria decora ${ }^{6}$) and it is tempting to think in terms of the Jones' model, with binding of the $\mathrm{C}=\mathrm{O}$ group to the enzyme surface and hydroxylation at $c a .6 .0$ and $7.3 \AA$ from this group. This is, in part, supported by the non-conversion of 3α-acetoxy- 5α-androstane (41) by C. elegans. 3 β-Acetoxy- 5α-androstan-17one (27) undergoes predominant 7 -mono-oxygenation with accompanying hydrolysis of the 3 -acetoxy-group. Dihydroxylation does not now occur to any great extent, possibly because, having achieved the dihydroxy-status, there is no great driving force for the substitution of additional hydroxy-functions. The minor product, however, like the product from 5α-androstan-17-one (23),

Table 1
Transformation of 5α-androstane derivatives by Cunninghamella elegans

5α-Androstane	Substrate recovered	Main product ${ }^{\text {a }}$	Other products ${ }^{\text {a }}$
5α-Androstan-17-one (23)	50\%	$1 \beta, 7 \alpha-(\mathrm{OH})_{2}(26) 14 \%$	$1 \beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})(24) 6 \%$
3α-Acetoxy- 5α-androstan-17-one (27)	0\%	$3 \beta, 7 \beta-(\mathrm{OH})_{2}(30) 31 \%$	$3 \beta, 7 \alpha-(\mathrm{OH})_{2}(33) 3 \%$
			$3 \beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})(29) 3 \%$
3α-Acetoxy- 5α-androstan-17-one (37) ${ }^{\text {b }}$	15\%	$3 \alpha-\mathrm{OAc}, 6 \beta, 11 \beta-(\mathrm{OH})_{2}$	$3 \alpha-\mathrm{OAc}, 6 \beta-\mathrm{OH}, 11-(\mathrm{C}=\mathrm{O})$
		(38) 22% 3α $\beta-(\mathrm{OH})_{2}(35)$ 43%	(39) $1 \% ; 1 \beta, 3 \alpha-(\mathrm{OH})_{2}(40) 8 \%$
3α-Hydroxy-5 α-androstan-17-one (34)	0\%	$3 \alpha, 7 \beta-(\mathrm{OH})_{2}(35) 43 \%$	$3 \alpha, 7 \alpha-(\mathrm{OH})_{2}(36) 10 \%$

a Yields are based on the amount of substrate transformed by the fungus. ${ }^{b}$ Results on (37) have been reported previously (ref. 2.)
Table 2
Transformation of $17 \mathrm{a}-\mathrm{aza}$ - $\mathrm{D}-\mathrm{homoandrostan-17-ones} \mathrm{and} \mathrm{of} 16$-aza- 5α-androstan-17-one by Cunninghamella elegans

Aza-steroid	Substrate recovered	Main product(s) ${ }^{\text {a }}$	Other products ${ }^{\text {a }}$
17 α-Aza-d-homo-5 α-androstan-17-one (1)	33\%	$7 \alpha-\mathrm{OH}$ (12) 35%	$6 \mathrm{B-OH}(13) 12 \%$
3β-Acetoxy-17a-aza-d-homo-5 α -	7\%	$3 \beta-\mathrm{OAc}, 9 \alpha-\mathrm{OH}$ (7) 24%	$3 \beta-\mathrm{OAc}, 7 \alpha-\mathrm{OH}(8) 3 \%$
androstan-17-one (2)		$3 \beta-\mathrm{OAc}, 6 \beta-\mathrm{OH}$ (5) 12%	$3 \beta, 6 \beta-(\mathrm{OH})_{2}(10)$
$\begin{aligned} & \text { 3 } \alpha \text {-Acetoxy-17a-aza-D-homo- } 5 \alpha- \\ & \text { androstan-17-one }(3)^{b} \end{aligned}$	16\%	$3 \alpha-\mathrm{OAc}, 6 \beta-\mathrm{OH}(15) 36 \%$ $3 \alpha-\mathrm{OAc}, 7 \alpha-(\mathrm{OH})$ (16) 16%	$\left.\begin{array}{l} 3 \alpha, 11 \alpha-\mathrm{OH})_{2}(17) \\ 3 \alpha, 11 \beta-(\mathrm{OH})_{2}(18) \end{array}\right\} 2 \%$
16-aza-5 α-androstan-17-one (19)	24\%	$\begin{aligned} & 7 \alpha, 11 \alpha-(O H)_{2}(20) 19 \% \\ & 1 \beta, 7 \alpha-(\mathrm{OH})_{2}(21) 19 \% \end{aligned}$	

[^0]Table 3
${ }^{1} \mathrm{H}$ N.m.r. spectra of derivatives of $17 \mathrm{a}-\mathrm{aza}$-D-homo- 5α-androstan-17-one (1)
Obs. methyl

Derivatives of (1) (1)	Obs. methyl frequencies					Lit. methyl shifts ($\Delta \delta$)		$\mathrm{C}-3(\delta){ }^{\text {c }}$	$\mathrm{C}-n(\delta){ }^{\circ}$
	Solvent	C-19 (8)	C-18 (8)	Obs. methyl shifts ($\Delta \delta$					
	CDCl_{3}	0.76	1.13	-		-			
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.69	1.07	-		-			
3β-OAc (2)	CDCl_{3}	0.81	1.14	-		-		4.67 (21)	-
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.69	1.07	-		-		4.80 (18)	-
$3 \beta-\mathrm{OH}$ (4)	CDCl_{3}	0.78	1.11					3.60 (21)	
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.74	1.08	-		-			
$3 \beta-\mathrm{OAc}, 6 \beta-\mathrm{OH}$ (5)	CDCl_{3}	1.03	1.16	+0.23	$+0.02{ }^{\text {a }}$	+0.23	+0.04	4.70 (20)	3.85 (9)
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	1.23	1.09	+0.54	+0.03	+0.55	+0.04	4.89 (23)	3.95 (10)
$3 \beta-\mathrm{OAc}, 6-(\mathrm{C}=\mathrm{O})(6)$	CDCl_{3}	0.77	1.16	-0.03	+0.02 ${ }^{\text {d }}$	-0.05	+0.02	4.65 (19)	3.85 (10)
$3 \beta-\mathrm{OAc}, 9 \alpha-\mathrm{OH}$ (7)	CDCl_{3}	0.93	1.13	+0.13	$-0.01{ }^{\text {d }}$	+0.13	+0.03	4.68 (21)	-
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.91	1.15	+0.22	$+0.09$	$+0.23$	$+0.08$	4.90 (24)	-
$3 \beta-\mathrm{OAc}, 7 \alpha-\mathrm{OH}(8)$	CDCl_{3}	0.81	1.13	+0.01	$-0.01{ }^{\text {a }}$	0.00	+0.01	4.68 (21)	4.03 (8)
$3 \beta-\mathrm{OH}, 9 \alpha-\mathrm{OH}$ (9)	CDCl_{3}	0.93	1.16	+0.15	$+0.05^{\circ}$	+0.13	+0.03	3.60 (23)	
$3 \beta-\mathrm{OH}, 6 \beta-\mathrm{OH}(10)$	CDCl_{3}	1.03	1.15	$+0.25$	+0.04 ${ }^{\circ}$	$+0.23$	+0.04	3.60 (23)	3.86 (10)
$3 \beta-\mathrm{OH}, 11 \alpha-\mathrm{OH}$ (11)	CDCl_{3}	0.98	1.18	+0.20	+0.07 ${ }^{\circ}$	+0.12	+0.03	3.60 (23)	3.66 (21)
$7 \alpha-\mathrm{OH}$ (12)	CDCl_{3}	0.73	1.11	-0.03	$-0.02{ }^{f}$	0.00	+0.01		4.03 (8)
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.77	1.15	+0.08	+0.08	+0.09	$+0.06$		4.25 (9)
$6 \beta-\mathrm{OH}$ (13)	CDCl_{3}	0.98	1.14	+0.22	+0.01 ${ }^{f}$	+0.23	$+0.04$		3.83 (8)
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	1.23	1.10	$+0.54$	+0.03	+0.55	+0.04		4.02 (8)
$6 \beta-\mathrm{OAc}$ (14)	CDCl_{3}	0.96	1.21	+0.20	$+0.08{ }^{f}$	+0.16	$+0.06$		5.12 (8)

${ }^{a}$ A positive value represents a downfield shift. ${ }^{b}$ Refs. 3, 4, and 5 . ${ }^{e} \delta$ Value is followed in parenthesis by width at half-height $\left(W_{i}, \mathrm{~Hz}\right) . \quad{ }^{d}$ Methyl shift relative to $3 \beta-\mathrm{OAc}$. Methyl shift relative to $3 \beta-\mathrm{OH}$. ${ }^{f}$ Methyl shift relative to (l).

Table 4
${ }^{1} \mathrm{H}$ N.m.r. spectra of derivatives of 16 -aza- 5α-androstan-17-one (19)

$\begin{aligned} & \text { Derivatives } \\ & \text { of (19) } \end{aligned}$	Solvent	Obs. methyl frequencies (8)		Obs. methyl shifts ($\Delta \delta)^{a}$		Lit. methyl shifts ($\Delta \delta)^{\text {b }}$		$\mathrm{C}-\mathrm{n}(\mathrm{\delta})^{\text {e }}$	
		C-19	C-18	C-19	C-18	C-19	C-18		
(19)	CDCl_{3}	0.81	1.00	-	-	-	-		-
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.73	1.01	-	-	-	-	-	- C 11
								C-7	C-11
$7 \alpha, 11 \alpha-(\mathrm{OH})_{2}(20)$	CDCl_{3}	0.91	1.00	+0.11	$0.00{ }^{\text {d }}$	+0.12	+0.04	$\begin{gathered} 3.78(7.5) \\ \mathrm{C}-7 \end{gathered}$	$2.75 \underset{\mathrm{C}-1}{(J \underset{1}{1} .2,11.2,6.0)}$
$1 \beta, 7 \alpha-(\mathrm{OH})_{2}(21)$	CDCl_{3}	0.86	1.01	+0.05	+0.01 ${ }^{\text {d }}$	+0.05	+0.01	3.78 (7.5)	3.48 (J 10.8, 5)
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	1.13	1.17	+0.40	$+0.16^{d}$	+0.36	+0.08	3.97 (8)	3.65 (15)
								C-6	C-11
$6 \beta, 11 \alpha-(\mathrm{OH})_{2}(22)$	CDCl_{3}	1.07	1.00	+0.26	$+0.00{ }^{d}$	+0.35	+0.07	3.95 (8.8)	2.49 ($J 11.0,11.0,6.1$),

${ }^{a}$ A positive value represents a downfield shift. ${ }^{b}$ Lit. $\Delta \delta$ values from refs. 3, 4, and $5 .{ }^{c} \delta$ Value is followed in parenthesis by width at half-height $\left(W_{w}, \mathrm{~Hz}\right) . \quad{ }^{d}$ Shifts relative to (4).

Table 5
${ }^{1} \mathrm{H}$ N.m.r. spectra of derivatives of 5α-androstan-17-one (23)

Derivatives of (23)	Solvent	Obs. methyl frequencies (δ)		Obs. methyl shifts ($\Delta \delta$) ${ }^{\text {a }}$		Lit. methyl shifts ($\Delta \delta)^{b}$		$\mathrm{C}-3(8){ }^{\text {c }}$	$\mathrm{C}-n(\delta){ }^{\circ}$	
(23)	CDCl_{3}	0.80	0.85	-	-	-	-	-		
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.73	0.76							
1 $\beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})$	CDCl_{3}	1.12	0.86	+0.32	+0.01 ${ }^{\text {d }}$	+0.33	+0.01		3.40	
(24)	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	1.19	0.80	+0.46	+0.04	+0.51	+0.05		3.50	
1,7-($\mathrm{C}=\mathrm{O})_{2}(25)$	CDCl_{3}	1.43	0.87	+0.63	+0.02 ${ }^{\text {d }}$	$+0.66$	+0.03			
$1 \beta, 7 \alpha-(\mathrm{OH})_{2}(26)$	CDCl_{3}	0.85	0.85	+0.05	$0.00{ }^{\text {d }}$	+0.05	+0.01		C-1 3.47 (15)	$\begin{gathered} C-7 \\ 3.97(6) \\ 4.07(7) \end{gathered}$
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	1.09	0.88	+0.29	+0.03 ${ }^{\text {d }}$	+0.36	+0.08		3.66 (13)	
$3 \beta-\mathrm{OAc}$ (27)	CDCl_{3}	0.85	0.85					4.70 (21)		
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.73	0.76					4.82 (19)		
$3 \beta-\mathrm{OH}(28)$	CDCl_{3}	0.82	0.84					3.55 (21)		
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.78	0.78					3.73 (22)		
3 $3-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})(29)$	CDCl_{3}	1.11	0.86	$+0.29$	$+0.02{ }^{\circ}$	$+0.28$	+0.01	3.70 (20)		
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	1.03	0.79	$+0.25$	+0.01	+0.24	+0.03	3.78 (20)		
$3 \beta, 7 \beta-(\mathrm{OH})_{2}(30)$	CDCl_{3}	0.84	0.87	+0.02	+0.03 ${ }^{\circ}$	$+0.03$	+0.03	3.58 (22)	3.58	
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.84 1.29	0.84 0.88	+0.49	+ $\overline{0.03}{ }^{\text {d }}$	+0.52	+0.05	3.70 (24)	3.70	
3,7-($\mathrm{C}=\mathrm{O})_{2}(31)$	CDCl_{3}	1.29 1.19	0.88 0.76	+0.49 +0.44	$+0.03{ }^{\text {d }}$ $0.00{ }^{\text {d }}$	+0.52 +0.37	+0.05 +0.01			
$3 \beta, 7 \beta-(\mathrm{OAc})_{2}$ (32)	CDCl_{3}	0.90	0.86	+0.44 +0.05	+0.01 ${ }^{\text {f }}$	+0.02	+0.02 +0.021	4.63 (20.5)		
$3 \beta, 7 \alpha-(\mathrm{OH})_{2}(33)$	CDCl_{3}	0.85	0.85	-0.03	-0.01 ${ }^{\text { }}$	0.00	+0.01	3.53 (21)	4.00	
$3 \alpha-\mathrm{OH}$ (34)	CDCl_{3}	0.79	0.85	-	-	-	-	4.07 (7)		
	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	0.80	0.80	-	-	-	-	4.22 (8)		
$3 \alpha, 7 \beta-(\mathrm{OH})_{2}(35)$	CDCl_{3}	0.83	0.88	-0.02	+0.03g	+0.03	+0.03	4.07 (8)	3.48	
$3 \alpha, 7 \alpha-(\mathrm{OH})_{2}(36)$	CDCl_{3}	0.78	0.84	-0.01	-0.010	0.00	+0.01	4.02	3.93	

${ }_{a}$ A positive value represents a downfield shift. ${ }^{b}$ Lit. $\Delta \delta$ values from refs. 3, 4, and 5 . δ Value is followed in parenthesis by width at half height ($\left.W_{i}, \mathrm{~Hz}\right)$. ${ }^{d}$ Methyl shifts relative to (23). - Methyl shifts relative to $3 \beta-\mathrm{OH}$. f Methyl shifts relative to $3 \beta-\mathrm{OAc}$ θ Methyl shifts relative to $3 \alpha-\mathrm{OH}$.

(1)
$\mathrm{R}^{\boldsymbol{n}}=\mathrm{H}$ unless stated otherwise
(2) $\mathbf{R}^{\mathbf{1}}=\mathrm{OAc}$
(3) $\mathrm{R}^{\mathbf{2}}=\mathrm{OAc}$
(11) $\mathrm{R}^{1}=\mathrm{R}^{\mathbf{7}}=\mathrm{OH}$
(4) $\mathbf{R}^{\mathbf{1}}=\mathrm{OH}$
(5) $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{3}=\mathrm{OH}$
12) $\mathbf{R}^{\mathbf{b}}=\mathrm{OH}$
(13) $\mathrm{R}^{3}=\mathrm{OH}$
(6) $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{O}$
(14) $\mathrm{R}^{3}=\mathrm{OAc}$
(7) $\mathbf{R}^{\mathbf{1}}=\mathrm{OAc}, \mathbf{R}^{6}=\mathrm{OH}$
(15) $\mathrm{R}^{2}=\mathrm{OAc}, \mathrm{R}^{3}=\mathrm{OH}$
(8) $\mathbf{R}^{\mathbf{1}}=\mathrm{OAc}, \mathrm{R}^{5}=\mathrm{OH}$
(17) $\mathbf{R}^{2}=\mathbf{R}^{7}-\mathbf{R}^{2}$
(9) $\mathrm{R}^{1}=\mathrm{R}^{6}=\mathrm{OH}$
(10) $\mathbf{R}^{\mathbf{1}}=\mathbf{R}^{3}=\mathrm{OH}$

(19)
$\mathrm{R}^{n}=\mathrm{H}$ unless stated otherwise
(20) $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{OH}$
(21) $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{OH}$
(22) $\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{OH}$

(23)
$\mathbf{R}^{\prime \prime}=\mathbf{H}$ unless stated otherwise

(24) $\mathrm{R}^{\mathbf{1}}=\mathrm{OH}, \mathbf{R}^{\mathbf{5}} \mathrm{R}^{\mathbf{6}}=\mathrm{O}$	(33) $\mathrm{R}^{\mathbf{3}}=\mathrm{R}^{6}=\mathrm{OH}$
(25) $\mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{O}$	(34) $\mathrm{R}^{4}=\mathrm{OH}$
(26) $\mathrm{R}^{1}=\mathrm{R}^{6}=\mathrm{OH}$	(35) $\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{OH}$
(27) $\mathrm{R}^{3}=\mathrm{OAc}$	(36) $\mathrm{R}^{4}=\mathrm{R}^{6}=\mathrm{OH}$
(28) $\mathrm{R}^{3}=\mathrm{OH}$	(37) $\mathrm{R}^{4}=\mathrm{OAc}$
(29) $\mathrm{R}^{3}=\mathrm{OH}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{O}$	(38) $\mathrm{R}^{9}=\mathrm{R}^{7}=\mathrm{OH}$
(30) $\mathbf{R}^{3}=\mathrm{R}^{5}=\mathrm{OH}$	(39) $\mathbf{R}^{\mathbf{9}}=\mathrm{OH}, \mathrm{R}^{\mathbf{7}} \mathrm{R}^{8}=\mathrm{O}$
(31) $\mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{O}$	(40) $\mathbf{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{4}}=\mathrm{OH}$
(32) $\mathrm{R}^{3}=\mathrm{R}^{5}=\mathrm{OAc}$	

(41)
preserves the $1 \beta, 7 \alpha$-dihydroxy-pattern. Whereas 7β monohydroxylation also dominates the transformation of 3α-hydroxy- 5α-androstan-17-one (34) the presence of a 3α-acetoxy-group in 3α-acetoxy- 5α-androstan-17-one (37)
causes a drastic change in the substitution pattern. The major product is now that resulting from $6 \beta, 11 \beta-$ dihydroxylation and, unlike the reaction involving the 3β-acetoxy- 5α-androstan-17-one (27), no hydrolysis of the acetoxy-function occurs. Possibly, the presence of the axial 3α-acetoxy-function favours approach of the molecule to the enzyme surface in the ' capsized ' mode, when hydroxylation occurs at the axial 11β - and $6 \beta-$ positions syn to the angular methyl group rather than at the equatorial 7β - or axial 7α-position, as in the other androstanes.

Unlike 5α-androstan-17-one (23), which undergoes $1 \beta, 7 \alpha$-dihydroxylation, 17a-aza-d-homo- 5α-androstan-
17-one (1) undergoes monohydroxylation at the 6β - and 7α-positions. This also occurs with 3α-acetoxy-17a-aza-D-homo- 5α-androstan-17-one (3), but there is also some 11α - and 11β-monohydroxylation with accompanying hydrolysis of the 3α-acetoxy-function. If the dihydroxylation of 3α-acetoxy- 5α-androstan-17-one (37) is sequential, with 11β-hydroxylation occurring after 6β hydroxylation, then the transformations of this compound and of its 17a-aza-D-homo-derivative (3) may not be too different, with hydroxylation of the aza-steroid stopping at the monohydroxylation stage. The predominant β-attack of 3α-acetoxy-17a-aza-d-homo- 5α -androstan-17-one (3) may, as in the case of 3α-acetoxy5α-androstan-17-one (37), be a consequence of the presence of the axial 3α-acetoxy-group. 9α-Hydroxylation predominates the transformation of 3β-acetoxy-17a-aza-d-homo-5 α-androstan-17-one (2), but the remaining products are similar to those from 3α-acetoxy-17a-aza-D-homo- 5α-androstan-17-one (3).

EXPERIMENTAL

General experimental details and incubation procedure are as given previously. ${ }^{2}$

Incubation of 17a-Aza-D-homo-5 α-androstan-17-one (1) with Cunninghamella elegans.-17a-Aza-d-homo-5 α-andro-stan-17-one ${ }^{7}$ (2.5 g), dissolved in ethanol (250 ml), was incubated for 3 d at $25^{\circ} \mathrm{C}$ with Cunninghamella elegans grown in the nutrient medium (63 flasks). Extraction gave the mycelial and broth extracts (3.9 g and 1.5 g , respectively) which were combined and chromatographed over neutral alumina (Woelm, activity IV, 600 g). Elution with ether gave the starting material (831 mg). Elution with ether-methanol (2-5\%) gave 6ß-hydroxy-17a-aza-d-homo$5 \alpha-a n d r o s t a n-17-o n e(13)(216 \mathrm{mg}$), m.p. (acetone) 259-261 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.5 ; \mathrm{H}, 10.4 ; \mathrm{N}, 4.6 . \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires C, $74.7 ; \mathrm{H}, 10.2 ; \mathrm{N}, 4.6 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3652,3601$, 3382 , and $1645 \mathrm{~cm}^{-1} ; m / e 305\left(M^{+}\right), 290\left(M^{+}-\mathrm{Me}\right)$, and $272\left(M^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right)$ and 7α-hydroxy-17a-aza-D-homo5α-androstan-17-one (12) (615 mg), m.p. (acetone) $251-$ $253{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.8 ; \mathrm{H}, 10.2$; $\mathrm{N}, 4.5 . \quad \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.7 ; \mathrm{H}, 10.2 ; \mathrm{N}, 4.6 \%)$; $\mathrm{v}_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3655$, 3662,3382 , and $1641 \mathrm{~cm}^{-1}$; $m / e 305\left(M^{+}\right), 290\left(M^{+}-\right.$ $\left.\mathrm{CH}_{3}\right)$, and $272\left(M^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right)$.
3β-Acetoxy-17a-aza-d-homo-5 α-androstan-17-one (2).-
This compound was prepared from 3β-acetoxy- 5α-andro-stan-17-one ${ }^{8}$ by published procedures. ${ }^{8,10}$
$3 \beta-H y d r o x y-17 a$-aza-D-homo-5 α-androstan-17-one (4).—A solution of 3β-acetoxy-17a-aza-d-homo- 5α-androstan-17-one
$(2.0 \mathrm{~g})$ in methanol (30 mll) was boiled under reflux with potassium hydroxide (0.45 g) for 1 h . The solution was cooled and acidified with glacial acetic acid, and the resultant solution was concentrated and the crude product recrystallised from methanol to give 3β-hydroxy-17a-aza-D-homo- $5 \alpha-$ androstan-17-one (4) as white plates ($1.2 \mathrm{~g}, 68.5 \%$), m.p. $299-301{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.9 ; \mathrm{H}, 10.0 ; \mathrm{N}, 4.5 . \quad \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.8 ; \mathrm{H}, 10.2 ; \mathrm{N}, 4.6 \%$).

Incubation of 3β-Acetoxy-17a-aza-D-homo-5 α-androstan-17one (2) with Cunninghamella elegans.-3ß-Acetoxy-17a-aza-d-homo- 5α-androstan- 17 -one (4.00 g), dissolved in ethanol (500 ml), was incubated for 3 d at $25^{\circ} \mathrm{C}$ with Cunninghamella elegans grown in the nutrient medium (100 flasks). Extraction gave the mycelial and broth extracts $(3.87 \mathrm{~g}$ and 1.52 g , respectively). The combined broth and mycelial extracts, dissolved in chloroform, were chromatographed over neutral alumina (Woelm, activity IV, 600 g). The first fraction eluted with ether gave starting material (284 mg). Elution with ether-methanol (5%) gave fractions identified as 3β -hydroxy-17a-aza-d-homo- 5α-androstan-17-one (4) (130 mg), m.p. (acetone-hexane) $300{ }^{\circ} \mathrm{C}$; m/e $305\left(M^{+}\right)$, $290\left(M^{+}-\right.$ Me), and $272\left(M^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right)$; 3β-acetoxy- 6β-hydroxy-17a-aza-D-homo-5 α-androstan-17-one (5) (460 mg), m.p. (acetone) 266-268 ${ }^{\circ} \mathrm{C}$ (Found: C, 69.6; H, 9.0; N, 3.95. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}$ requires C, 69.4; $\mathrm{H}, 9.15$; $\mathrm{N}, 3.85 \%$) ; $\nu_{\text {max }}$ $1727,1642,3601$, and $3658 \mathrm{~cm}^{-1}$; $m / e 363\left(M^{+}\right), 348$ ($M^{+}-\mathrm{Me}$), $288\left(M^{+}-\mathrm{Me}-\mathrm{MeCO}_{2} \mathrm{H}\right.$), and $270\left(M^{+}-\right.$ $\mathrm{Me}-\mathrm{MeCO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}$) ; and 3β-acetoxy- 9α-hydroxy-17a-aza-D-homo-5 α-androstan-17-one (7) (929 mg), m.p. (acetone) $280-282{ }^{\circ} \mathrm{C}$ (Found: C, 69.3; H, 9.3; N, 3.75. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}$ requires $\mathrm{C}, 69.4 ; \mathrm{H}, 9.15 ; \mathrm{N}, 3.85 \%$) ; $\mathrm{v}_{\text {max }} 1728$ and $1640 \mathrm{~cm}^{-1}$; $m / e 363\left(M^{+}\right), 330\left(M^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right)$.

Later fractions of 3β-acetoxy- 9α-hydroxy-17a-aza-d-homo- 5α-androstan-17-one (7) were mixed with 3β-acetoxy7α-hydroxy-17a-aza-d-homo- 5α-androstan-17-one (8), $\nu_{\text {max }}$ 1728 and $1640 \mathrm{~cm}^{-1}$.

Ether-methanol ($9: 1$) eluted a mixture of three monohydroxylated derivatives of 3β-hydroxy-17a-aza-d-homo5α-androstan-17-one (4) present in an approximately 1:1:1 ratio. On the basis of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ (Table 4) of the mixture, the structures of the products were tentatively assigned as $3 \beta, 6 \beta$-dihydroxy-17a-aza-D-homo-5 α-androstan-17-one (10), $3 \beta, 9 \alpha$-dihydroxy-17a-aza-D-homo-5 α-androstan-17-one (9), and 3 $3 \beta, 11 \alpha$-dihydroxy-17a-aza-D-homo-5 α-androstan-17-one (11).

Incubation of 16-Aza-5 α-androstan-17-one (19) with Cunninghamella elegans.-16-Aza-5 α-androstan-17-one ${ }^{11}$ (1.8 g) dissolved in ethanol (100 ml) was incubated with Cunninghamella elegans grown in the nutrient medium (44 flasks) for 3 d at $25^{\circ} \mathrm{C}$. Extraction gave the mycelial and broth extracts (6.4 g and 1.9 g , respectively) which were combined and chromatographed over neutral alumina (Woelm, activity IV, 200 g).

The three component mixture was purified by preparative t.l.c. $\left[\begin{array}{ll}5 & 20 \times 20 \\ \mathrm{~cm} \\ \text { plates, } & 2 \times \mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\end{array}\right.$ (25:4:1)]. The band of highest R_{F} yielded $7 \alpha, 11 \alpha-$ dihydroxy-16-aza- 5α-androstan-17-one (20) as an oil, m / e $307\left(M^{+}\right)$when extracted with acetone-methanol (1:1). The middle band yielded $1 \beta, 7 \alpha$-dihydroxy-16-aza- $5 \alpha-$ androstan-17-one (21) as an oil, $m / e 307\left(M^{+}\right)$, while the band of lowest R_{F} gave a mixture of $6 \beta, 11 \alpha-(22)$ and $7 \alpha, 11 \alpha-$ dihydroxy-16-aza- 5α-androstan-17-one (20) as an oil, m / e 307 (M^{+}).

Incubation of 5α-Androstan-17-one (23) with Cunninghamella elegans.-5 5 -Androstan-17-one (4.0 g), dissolved
in ethanol (500 ml), was incubated at $25{ }^{\circ} \mathrm{C}$ for 3 d with Cunninghamella elegans grown in the nutrient medium (100 flasks). Extraction gave the mycelial and broth extracts (4.7 g and 2.5 g , respectively) which were combined and chromatographed over neutral alumina (Woelm, activity III, 600 g) to give, on elution with ether, 1β-hydroxy5α-androstane-7,17-dione (24) (121 mg), m.p. (ethyl acetate) $177-179{ }^{\circ} \mathrm{C}$ (lit.,$^{12} \mathrm{~m} . \mathrm{p} .180-182{ }^{\circ} \mathrm{C}$) and $1 \beta, 7 \alpha$-dihydroxy5α-androstan-17-one (26) (318 mg), m.p. (acetone) 217 $219{ }^{\circ} \mathrm{C}$ (Found: C, 74.5; H, 10.05. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C , $74.5 ; \mathrm{H}, 9.9 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3599,3436$, and $1740 \mathrm{~cm}^{-1}$; $m / e 306\left(M^{+}\right) 288\left(M^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, and $270\left(M^{+}-2 \mathrm{H}_{2} \mathrm{O}\right)$.

Oxidation of 1β-hydroxy- 5α-androstane-7,17-dione (24) (52 mg) by Jones reagent gave 5α-androstane-1,7,17trione (25) (35.6 mg) as a white, crystalline solid from acetone-hexane, m.p. $238-240^{\circ} \mathrm{C}$ (lit., ${ }^{12}$ m.p. $235-237{ }^{\circ} \mathrm{C}$).

Incubation of 3β-Acetoxy- α-androstan-17-one (27) with Cunninghamella elegans.-3 3 -Acetoxy- 5α-androstan-17-one $(4.40 \mathrm{~g})$, dissolved in ethanol $(400 \mathrm{ml})$, was incubated with Cunninghamella elegans (110 flasks) for 3 d at $25{ }^{\circ} \mathrm{C}$. Extraction gave the mycelial and broth extracts (5.0 g and 4.4 g , respectively), which were combined and chromatographed over neutral alumina (Woelm, activity III, 600 g).

Elution with ether gave 3β-hydroxy- 5α-androstan-7,17dione (29) (112 mg), m.p. (acetone-hexane) $198-200{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13} \mathrm{~m} . \mathrm{p} .202-204{ }^{\circ} \mathrm{C}$); $\nu_{\text {max. }} 1738,1709,3602$, and $3604 ; m / e 304\left(M^{+}\right), 286\left(M^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, and $271\left(M^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}$) ; $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (30) (901 mg), m.p. (acetone) $237-238{ }^{\circ} \mathrm{C}$ (lit., ${ }^{14} \mathrm{~m} . \mathrm{p} .241-243{ }^{\circ} \mathrm{C}$); $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1733,3599$, and $3410 \mathrm{~cm}^{-1}$; m/e $306\left(M^{+}\right)$, $291\left(M^{+}-\mathrm{Me}\right), 288\left(M^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, and $273\left(M^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ Me) ; and $3 \beta, 7 \alpha$-dihydroxy- 5α-androstan-17-one (33) (110 mg), m.p. (acetone) $196-198{ }^{\circ} \mathrm{C}$ (lit.,$^{13} \mathrm{~m} . \mathrm{p} .194-195{ }^{\circ} \mathrm{C}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1738,3602$, and $3415 \mathrm{~cm}^{-1} ; m / e 306\left(M^{+}\right)$, $288\left(M^{+}-\mathrm{H}_{2} \mathrm{O}\right)$, and $270\left(M^{+}-2 \mathrm{H}_{2} \mathrm{O}\right)$.

Oxidation of $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (30) (90 mg) by Jones reagent gave 5α-androstane-3,7,17-trione (25) (52 mg) as a white, crystalline solid from acetonehexane, m.p. 235-237 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{14} \mathrm{~m} . \mathrm{p} .239-241{ }^{\circ} \mathrm{C}$).

Acetylation of $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (30) (60 mg) gave the crude diacetate as a viscous oil which was recrystallised from methanol to give $3 \beta, 7 \beta$-diacetoxy- 5α -androstan-17-one (32) (34 mg) as a white solid, m.p. 144$146{ }^{\circ} \mathrm{C}$ (lit., ${ }^{14} 142-145{ }^{\circ} \mathrm{C}$).

Incubation of 3α-Hydroxy- 5α-androstan-17-one (34) with Cunninghamella elegans.- 3α-Hydroxy- 5α-androstan-17one (4.8 g), dissolved in ethanol (500 ml), was incubated for 3 d at $25{ }^{\circ} \mathrm{C}$ with Cunninghamella elegans grown in the nutrient medium (120 flasks). Extraction gave the broth and mycelial extracts (6.5 g and 2.1 g , respectively). The broth extract was recrystallised from acetone to give $3 \alpha, 7 \beta-$ dihydroxy- 5α-androstan-17-one (35) (2.07 g) as white prisms, m.p. $190-192{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13}$ m.p. $201-202{ }^{\circ} \mathrm{C}$). The mother liquor from the recrystallisation was concentrated and combined with the mycelial extract and chromatographed over neutral alumina (Woelm, activity III, 200 g) to give, on elution with ether, $3 \alpha, 7 \alpha$-dihydroxy- 5α-androstan17 -one (36) (484 mg), m.p. (acetone-hexane) $159.5-161.5$ ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.7$; $\mathrm{H}, 9.7 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}$, 9.8%).

Oxidation of $3 \alpha, 7 \beta$-dihydroxy- 5α-androstan-17-one (35) $(152 \mathrm{mg})$ by Jones reagent gave 5α-androstan-3,7,17trione (25) (108 mg) recrystallised from acetone-hexane, m.p. $235-236{ }^{\circ} \mathrm{C}$ (lit.,14 m.p. $239-241{ }^{\circ} \mathrm{C}$).
[0/1008 Received, 30th June, 1980]

REFERENCES

${ }^{1}$ Part 3, T. A. Crabb, P. J. Dawson, and R. O. Williams, J. Chem. Soc., Perkin Trans. 1, 1980, 2535.
${ }^{2}$ T. A. Crabb, J. A. Saul, and R. O. Williams, J. Chem. Soc., Perkin Trans. 1, 1977, 2599.
${ }^{3}$ J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, E. R. H. Jones A. Kasel, V. Kumar, G. D. Meakins, Y. Morisawa,
E. E. Richards, and P. D. Woodgate, J. Chem. Soc. (C), 1970, 250.
${ }_{4}$ P. V. Demarco, E. Farkas, D. Doddrell, B. L. Mylari, and E. Wenkert, J. Am. Chem. Soc., 1968, 90, 5480.
${ }^{5}$ K. Tori and K. Aono, Ann. Rept. Shionogi Res. Lab., 1964, 14, 136.
${ }^{6}$ A. M. Bell, P. C. Cherry, I. M. Clarke, W. A. Denny, E. R. H. Jones, G. D. Meakins, and P. D. Woodgate, J. Chem. Soc., Perkin Trans. 1, 1972, 2081.
${ }_{7}$ C. W. Shoppee and R. W. Killick, J. Chem. Soc. (C), 1970, 1613.
${ }^{8}$ L. Ruzicka, M. W. Goldberg, J. Meyer, N. Brungger, and E. Eichenberger, Helv. Chim. Acta, 1934, 17, 1395.
${ }^{9}$ H. Wolf, Tetrahedron Lett., 1965, 1075.
${ }^{10}$ M. Kobayashi, Y. Shimizu, and H. Mitsuhashi, Chem. Pharm. Bull., 1969, 17, 1255.
${ }^{11}$ E. R. H. Jones, G. D. Meakins, and K. Z. Tuba, J. Chem. Soc. (C), 1969, 1597.
${ }^{12}$ A. M. Bell, W. A. Denny, E. R. H. Jones, G. D. Meakins, and W. E. Müller, J. Chem. Soc., Perkin Trans. 1, 1972, 2759.
13 V. E. M. Chambers, W. A. Denny, J. M. Evans, E. R. H. Jones, A. Kasal, G. D. Meakins, and J. Pragnell, J. Chem. Soc., Perkin Trans. 1, 1973, 1500.

14 J. W. Browne, W. A. Denny, E. R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J. Chem. Soc., Perkin Trans. 1, 1973, 1493.

[^0]: a \% Yields are based on the amount of substrate transformed by the fungus. ${ }^{b}$ Results on (3) have been reported previously (ref. 2). ${ }^{e}$ Tentative assignment of structures to these three products.

